

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON PURE MATHEMATICS

Majority dynamics on sparse random graphs

by

Prof. Jeong Han KIM

Korea Institute for Advanced Studies, Korea

<u>Abstract</u>

Majority dynamics on a graph *G* is a deterministic process such that every vertex updates its ± 1 -assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, O'Donnell, Tamuz and Tan conjectured that, in the Erdös-Rényi random graph G(n,p), the random initial ± 1 -assignment converges to a 99%-agreement with high probability whenever $p = \omega(1/n)$.

This conjecture was first confirmed for $p \ge \lambda n^{-1/2}$ for a large constant λ by Fountoulakis, Kang and Makai. Although this result has been reproved recently by Tran and Vu and by Berkowitz and Devlin, it was unknown whether the conjecture holds for $p < \lambda n^{-1/2}$. We break this $\Omega(n^{-1/2})$ -barrier by proving the conjecture for sparser random graphs G(n,p), where $\lambda' n^{-3/5} \log n \le p \le \lambda n^{-1/2}$ with a large constant $\lambda' > 0$.

> Date : 17 April 2023 (Monday) Time : 4:30pm Venue : Room 4472 (Lifts 25/26)

> > All are Welcome!